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particle with arbitrary spin in a magnetic field

M Moshinsky† and Yu F Smirnov
Instituto de F́ısica, UNAM, Apartado Postal 20-364, 01000 Mexico, DF Mexico

Received 28 May 1996

Abstract. Equations for relativistic particles for arbitrary spin have been of interest since Dirac
original work for spin 1

2 , but they involved either bothersome constraints or start with as many
Dirac equations as are required to get the derived spin from its original1

2 value. We first
show that it is possible to have just one equation involvingn α’s and β ’s matrices that give
possibilities up to1

2n for the spin. We then decompose theα’s andβ ’s into direct products of
ordinary spin matrices and a new type of them that we call sign spin. The problem reduces then
to one in terms of the generators of a U(4) group entirely similar to the one in the spin–isospin
theory of nuclear physics and hence the name of supermultiplets in the title. Using then the
techniques of the latter we discuss the problem of a free particle in a magnetic field forn = 1, 2
and 3 or equivalently eigenvalues for spins 0,1

2 , 1 and 3
2, and the energies are given as solutions

of elementary algebraic equations.

1. Introduction

The equation of a relativistic particle of spin12 was proposed long ago by Dirac [1] and it
had an enormous success in many applications. The extension of the formalism to arbitrary
spin has given rise to a veritable flood of papers in the last 50 years. Dirac himself [2] and
Fierz and Pauli [3] made proposals, but which were restricted by bothersome constraints.
Bargmann and Wigner [4] started not with one but a system ofn Dirac type of equations
and obtained a particle of spin12n by restricting the wave function to the symmetric solution
under permutation. Kemmer [5] managed to obtain a Dirac type of equation but only for
spins 0 and 1. In fact Mathews [6], under the strict restrictions with which he worked argued
that there could be no relativistic equations with spin higher than 1. Bhabha [7] on the other
hand again returned to the possibility of arbitrary spin, though connecting them later with
representations of SO(5) group as discussed by Krajcik and Nieto [8]. Weinberg [9] derived
the Feynman rules for any spin in which the propagators involve matrices that transform
like symmetric traceless tensors of rank 2j . Nikitin [10] and his collaborators deal elegantly
with relativistic particles of arbitrary spin in Coulomb and magnetic monopole fields.

In view of the above references, and possible hundreds more that seem less relevant,
one could well ask if there is any reason to deal with the subject of a relativistic particle
with arbitrary spin with or without interaction. The authors had two main reasons for getting
into this crowded field. The first one was that they decided to follow the Barut approach
[11] that they used [12] to get a single relativistic equation for a many-body problem, and
particularized it to a single particle thus having only one positionr and momentump
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vectors but manyα’s, β ’s in their equation. The second is that they noticed thatα’s and
β ’s could be represented by a direct product of theordinary spin s, and a new concept
with the same properties as the latter that they calledsign spint. Thus the problem became
very similar to the one in nuclear physics in which we have ordinary spin and isospin, and
the main symmetry group goes from U(2) to U(4), where the latter is associated with the
supermultiplets indicated in the title.

The formalism developed could be applied to any type of interaction but for simplicity,
and to get results that involved no approximation, we restricted ourselves to the problem in
a constant magnetic field.

We could start with a Lorentz invariant formulation of the paper as we did in a recent
publication where we used a time like unit four vector(uµ), µ = 0, 1, 2, 3 and applied the
analysis to a Dirac oscillator interaction [13]. We proceeded then to discuss in detail the
energy spectra of the problem as function of the spin of the particle in the definite frame of
reference where(uµ) = (1, 0, 0, 0).

For the problems to be discussed in this paper we directly analyse them in the last frame
of reference, i.e.(uµ) = (1, 0, 0, 0) as the extension to an arbitrary one can be done with
the boosts indicated in [13].

We shall start by analysing the well known problem [14] of a relativistic particle of
spin 1

2 in a magnetic field as it will provide us, in a novel way, with a number of results
that we will require in connection with the problem of arbitrary spin.

2. Relativistic equation for a spin-12 particle in a magnetic field

The well known equation [14] for a particle with the characteristics indicated in the title is

(α · B + β)ψ = Eψ (2.1)

where we use units ¯h = m = c = 1, m is the mass of the particle,

α =
(

0 σ
σ 0

)
β =

(
I 0
0 −I

)
(2.2)

whereσ the vector of Pauli spin matrices,

B = p − (e/2)(r × H) (2.3)

wherep is the momentum of the particle,r its position, e its charge andH the vector
associated with the magnetic field.

The matricesα, β are of dimension 4×4 but we could convert them into direct products
of 2 × 2 by introducing the definition

Î ≡
(

1 0
0 1

)
s1 ≡ 1

2

(
0 1
1 0

)
s2 ≡ 1

2

(
0 −i
i 0

)
s3 ≡ 1

2

(
1 0
0 −1

)
(2.4)

Ǐ ≡
[

1 0
0 1

]
t1 ≡ 1

2

[
0 1
1 0

]
t2 ≡ 1

2

[
0 −i
i 0

]
t3 ≡ 1

2

[
1 0
0 −1

]
.

(2.5)

Clearly then we haveα andβ as the direct products

α = 4s ⊗ t1 β = 2Î ⊗ t3 . (2.6)

The matricessi, i = 1, 2, 3 are those of ordinary spin12, while ti , i = 1, 2, 3, . . . , which
we distinguish by square instead of round brackets, have the same definition as those ofsi



Supermultiplets and relativistic problems: I 6029

but play a very different role and we shall call themsign spin as we shall later see that
they are associated with the sign of the energy. The set of matrices (2.4), (2.5) are identical
in form to those appearing in supermultiplet theory as introduced by Wigner [15], but in
which theti , i = 1, 2, 3 were interpreted as the components of the isotopic spin.

Going back to equation (2.1) we can see from (2.4), (2.5) that it can be written as[
4(s ⊗ t1) · B + 2(Î ⊗ t3)

]
ψ = Eψ . (2.7)

As is usual in the case of ordinary spin, we could express theψ in terms of two
components with sign spin± 1

2, which we could designate as

ψ =
[
ψ+
ψ−

]
(2.8)

and in that case from (2.5), equation (2.7) decomposes into two equations

2s · [p − (e/2)(r × H)]ψ− = (E − 1)ψ+ (2.9)

2s · [p − (e/2)(r × H)]ψ+ = (E + 1)ψ− . (2.10)

Multiplying the first by (E + 1) and substituting in the second, we get forψ+ the
equation

[(p2
1 + p2

2 + p3
3)+ (e2H2/4)(x2

1 + x2
2)+ eH(x1p2 − x2p1)+ 2eHs3]ψ+ = (E2 − 1)ψ+

(2.11)

where we assumedH to be a constant and in the direction ofx3.
The eigenvalues and eigenfunctions are well known in terms of cylindrical coordinates

[14] but we will rewrite it in terms of creation and annihilation operators, to have them in
a form more convenient for our later discussion of the problem with arbitrary spin.

Let us start by defining the creation and annihilation operators in the plane(x1, x2) as

ηi = 1√
2

[(
eH
2

)1/2

xi − i

(
eH
2

)−1/2

pi

]
ξi = 1√

2

[(
eH
2

)1/2

xi + i

(
eH
2

)−1/2

pi

]
(2.12)

with i = 1, 2. Furthermore we introduce spherical components of these operators in the
form

η± = 1√
2
(η1 ± iη2) ξ± = 1√

2
(ξ1 ∓ iξ2) . (2.13)

Equation (2.11) takes then the form[
eH(2η+ξ+ + 1)+ p2

3 + 2eHs3
]
ψ+ = (E2 − 1)ψ+ . (2.14)

The eigenfunctions of (2.14) can be written in the form of a ket

|n+n−kσ 〉 = η
n+
+ η

n−
−√

n+!n−!
|0〉eikx3χσ (2.15)

where

|0〉 = π−1/2 exp[− 1
2(x

2
1 + x2

2)] (2.16)

is the ground state andn± take the integer valuesn± = 0, 1, 2, . . . . Theχσ stands for the
ordinary spin-12 function with the projectionσ = ± 1

2.
The eigenvalue of the energies are then

E2
n+kσ = 1 + eH(2n+ + 1 + 2σ)+ k2 (2.17)
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and it does not depend onn−, so there is an infinite degeneracy in this quantum number.
As a last point concerning this elementary problem it is useful to expresss·B appearing

in (2.7) in terms of creation and annihilation operators, and particularly to notice that only
those with the+ sign, i.e.η+, ξ+ will be present. For this purpose we note that in spherical
components.

s · B =
∑
q

(−1)qs−qBq q = +, 0,− (2.18)

with

s± = ∓ 1√
2
(s1 ± is2) B± = ∓ 1√

2
(B1 ± iB2) B0 = B3 s0 = s3 . (2.19)

From the definition (2.3) ofB and replacingpi, xi, i = 1, 2 by η±, ξ±, as follows from
(2.12), (2.13), we arrive at the expression

s · B = i(eH)1/2(η+s− + ξ+s+)+ s0p3 . (2.20)

Matrix elements of this operator with respect to states of the form (2.14), will be relevant
for the determination of the energy spectrum as function of the spin of a relativistic particle
in a magnetic field.

3. Relativistic equation for a particle of arbitrary spin in a magnetic field

As is well known the Dirac equation for a system ofn non-interacting particles can be
written as

n∑
u=1

(αu · pu + βu)ψ = Eψ (3.1)

where

βu = I ⊗ I ⊗ · · · ⊗ I ⊗ β ⊗ I · · · ⊗ I ⊗ I (3.2)

is a direct product in 4× 4 matrices wheren − 1 of them are unity and in theu position
we have aβ of the form (2.2). A similar definition holds for theαu.

The validity of (3.1) is justified [16] by the fact that by squaring, rearranging, squaring
again, etc, and using the anticommuting properties of theαu, βu we can obtain a 2n degree
algebraic equation involving only theE and thepu and its 2n roots turn out to be

E = ±
√
p2

1 + 1 ±
√
p2

2 + 1 · · · ±
√
p2
n + 1 (3.3)

as the Einstein relation leads us to expect.
Nothing prevents us considering the case when all the momenta are equal, i.e.pu =

p, u = 1, 2, . . . , n and in that case we have an equation for a single particle, but as each
αu is associated with spin12, the presence ofn of them indicate that our particle would, in
general, have a mixture of spins with values

1
2n,

1
2n− 1, . . . , 1

2 or 0. (3.4)

If such a type of particle is in a magnetic field we just have to replacep by B of (2.3)
and have the equation

n∑
u=1

(αu · B + βu)ψ = nEψ . (3.5)
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Note that in (3.5) the energyE of (3.1) is replaced bynE as each of the terms in the
summation on the left-hand side of (3.5) makes a contribution and we would like to denote
the energy as the average of these contributions. This point was discussed in detail in [13].

We would like the solutions of the equation (3.5) to be characterized by a definite spin,
at least for that part of them that have the highest positive value for the energy. This is
feasible as Bargmann and Wigner [4] already indicated that in the case of free particles
the solution corresponding to the symmetric representation of the permutation group has
spin 1

2n.
Note that equation (3.5) is invariant under permutation of theu indices of theαu, βu

matrices and thus we could characterize our solutions by irreps of the permutation group
S(n). This we shall do but with the help of its complementary U(4) group [17, 18].

To begin with we return to the development (2.6) of theα andβ but now with an index
u, i.e.

αu = 4su ⊗ t1u (3.6)

βu = 2Î ⊗ t3u (3.7)

where nowsu, tiu, t3u are direct products ofn 2×2 matrices, wheren−1 of them are unity
and in the positionu appears ansi or ti , i = 1, 2, 3 of the form (2.4) and (2.5), respectively.

From eqautions (3.6), (3.7) we see that equation (3.5) can be written as

n∑
u=1

{
4

3∑
i=1

[(siu ⊗ tiu)Bi ] + 2Î ⊗ t3u

}
ψ = nEψ (3.8)

where instead of a scalar product as in (2.7) we prefer to write it in Cartesian components
i = 1, 2, 3 and sum over them.

We now proceed to show that besides the operatorBi , the other terms appearing in (3.8)
are part of the generators of a U(4) group complementary to the permutation symmetry group
of the problem. We start by defining

Si ≡
n∑
u=1

siu ⊗ Ǐ , Ti ≡
n∑
u=1

Î ⊗ tiu, Rij ≡
n∑
u=1

siu ⊗ tju . (3.9)

As we have the commutation relations

[siu, sju] = iεijksku [siu, sjv] = 0 if u 6= v (3.10)

and similarly for the componentstiu of the sign spin, while of course [siu, tjv] = 0, we
show in the appendix that the operators (3.9) satisfy the commutation relations

[Si, Sj ] = iεijkSk [Ti, Tj ] = iεijkTk [Si, Tj ] = 0

[Si, Rjk] = iεij`R`k [Ti, Rjk] = iεik`Rj`

[Rij , Rk`] = 1
4iεikmSmδj` + 1

4iδikεj`nTn .

(3.11)

From the commutation rules (3.11) we conclude that the operators (3.9) together with
the unit operator̂I ⊗ Ǐ , are the 16 generators of a U(4) group [19], that is complementary
to theS(n) group of permutations acting on each ordinary and sign spin that have the index
u = 1, 2, . . . , n [17, 18].

The irreps of U(4) are characterized by a partition{h1h2h3h4} ≡ {h} which at the same
time is the partition characterizingS(n) and thus [18]

h1 + h2 + h3 + h4 = n h1 > h2 > h3 > h4 > 0 . (3.12)



6032 M Moshinsky and Yu F Smirnov

To define the states associates with this partition we can use the Gelfand–Zetlin scheme
[20], or more conveniently use a chain of subgroups of U(4) that are more relevant to the
problem. Clearly one that has this type of property is

U(4) ⊃ Û (2)⊗ Ǔ (2) (3.13)

where Û(2), Ǔ(2) are associated respectively with the ordinary and a sign spin whose
generators areSi, Ti, i = 1, 2, 3.

The states are then characterized by the partition{h} as well by the eigenvalues of the
Casimir operator of the ordinary and sign spin, i.e.s(s+ 1), t (t + 1). Furthermore the U(2)
group has an O(2) subgroup whose irreps could be characterized by an indexσ in the case
of the ordinary spin andτ for the sign spin. Thus the basis of the irreducible representations
(BIR) of the chain of group (3.12) can be denoted by the ket

|{h}γ sσ tτ 〉 . (3.14)

γ is an index that distinguishes the representations(s, t) in {h} when they are repeated [18].
The ket (3.13) can be determined in terms of elementary permissible diagrams (EPD)

by a procedure similar to that used in [21] for the chain

U(3) ⊃ O(3) ⊃ O(2) (3.15)

and we plan to follow this program in a future publication, but here we only care that this
type of ket exists, and in the examples that we shall discuss at the end of this paper, we
shall obtain it explicitly in a more elementary manner.

We now return to our basic equation (3.8) which, in the notation (3.9), can be written as[
4

3∑
i=1

(Ri1Bi)+ 2T3

]
ψ = nEψ. (3.16)

Immediately we note that (3.16) besidesBi that depends on the coordinates, momenta and
H, it has only 4 generators of our U(4) groupRi1, T3, i = 1, 2, 3 and thusψ could be
characterized by an irrep{h} of U(4).To find other integrals of motion we note that (2.20)
would apply also if the single spins is replaced by the total oneS = ∑n

u=1 su and thus we
see thatS ·B contains onlyη+, ξ+. Thus as there are no termsη−, ξ− the number operator
η− · ξ−, is also an integral of motion characterizing the wave function with the eigenvalue
n−. Furthermore as we have chosen the direction of the vectorH asx3, the total angular
momentum in that direction is also an integral of motion, i.e.

J3 = (x1p2 − x2p1)+
n∑
u=1

s3u (3.17)

and its eigenvalue, that we denote byµ, would also characterizeψ .
Now, as in [13], we need to obtain the set of states in terms of which we can represent

the operator on the left-hand side of (3.16) as a finite matrix. To do this we first note that
for the configuration part of these states we can use (2.15) suppressingχσ , while for the
spin part we can employ (3.14) to obtain kets of the form(

η
n+
+ η

n−
−√

n+!n−!
|0〉

)
eikx3|{h}γ sσ tτ 〉 (3.18)

which now we wish to rewrite so that the integrals of motion for the operator in the left-hand
side of (3.16) appear explicitly.

For this purpose we note that the orbital angular momentum can also be written as

L3 = x1p2 − x2p1 = η+ξ+ − η−ξ− (3.19)
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so thatµ associated withJ3 takes the value

µ = n+ − n− + σ . (3.20)

As n− is also an integral of motion we shall denote from now on asν and thusn+ = µ+ν−σ.
Substituting these results in (3.17) we obtain the ket

|µ+ ν − σ, ν, k{h}γ sσ tτ 〉 =
(

η
µ+ν−σ
+ ην−√

(µ+ ν − σ)!ν!
|0〉

)
eikx3|{h}γ σ tτ 〉 . (3.21)

From the above discussion we see that the matrix elements of the operator on the left-
hand side of (3.16) with respect to the states (3.21) will be diagonal in the indicesµνk{h},
and as for a fixed{h} we have only a finite number of values forγ, s, t , our matrix will
be finite. By diagonalizing it we will get the values of the energy as function ofµ, ν, k{h}
and the last one, which is the irrep of the U(4) group, will also give to us information of
the spins associated with given energies.

We now need to express the matrix elements of the operators on the left-hand of (3.16)
explicitly with respect to the states (3.21). For this purpose its convenient to express the
operator in question in spherical rather than Cartesian indices. For this objective we note
the relation

t1u = 1√
2
(−t+u + t−u) (3.22)

where the index 1 is Cartesian and± are spherical. Furthermore, we can write

H ≡
3∑
i=1

4(Ri1Bi)+ 2T3 =
n∑
u=1

{
4

3∑
i=1

[(siuBi)⊗ tiu]

}
+ 2T3

=
n∑
u=1

{
4

[
i(eH)1/2(η+s−u + ξ+s+u)+ soup3

] ⊗ 1√
2
(−t+u + t−u)

}
+ 2T3

= 4i

(
eH
2

)1/2 [
η+(−R−+ + R−−)+ ξ+(−R++ + R+−)

]
+ 4√

2
(−R0+ + R0−)p3 + 2T3 (3.23)

where we made use of the fact that the operatorsBi, η+, ξ+ that depend only on coordinates
and momenta of course commute with the sign and ordinary spinstiu andsiu, and we used
also the development (2.20) ofS·B, as well as the notation+, 0,− of spherical components.

The matrix element ofH of (3.22) with respect to the states (3.21) can now be obtained
straightforwardly by noting that

η+|n+〉 =
√
n+ + 1|n+ 1〉 ξ+|n+〉 = √

n+|n+ − 1〉 p3|k〉 = k|k〉 (3.24)

while the more relevant part is to obtain matrix elements of the type

〈{h}γ ′s ′σ ′t ′τ ′|Rqq ′ |{h}γ sσ tτ 〉 = 〈sσ, 1q|s ′σ ′〉〈tτ, 1q ′|tτ ′〉〈{h}γ ′s ′t ′‖R‖{h}γ st〉
(3.25)

where we made use of the Wigner–Eckart theorem to derive the right-hand side in which
〈·|·〉 are Clebsch–Gordan coefficients. The reduced matrix element ofR can be obtained
using fractional parentage and Racah coefficients [22] as it is identical in form to the one
appearing in ordinary supermultiplet theory [15], where, besides the ordinary spin, one is
dealing with isospin instead of sign spin.
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It is also important to obtain the full matrix element of the operatorH of (3.23) in the
basis (3.21) and for this purpose it is convenient to writeH in the form

H =
∑
q,q ′

λqq ′Rqq ′ + 2T3 (3.26)

whereλqq ′ is defined by

λ−+ = −4iωη+ λ−− = 4iωη+ λ0+ = −2
√

2k

λ++ = −4iωξ+ λ+− = 4iωξ+ λ0− = 2
√

2k
(3.27)

and where we replacedp3, which is an integral of motion of the problem, byk in view of
the appearance of exp(ikx3) in (3.21). Furthermore, we shall from now on use the notation

ω ≡ (eH/2)1/2 . (3.28)

To obtain the secular equation that will give use the different energies associated with
the integrals of motionµ, ν, k, {h} we need to consider from (3.16), (3.23) the numerical
matrix

‖〈µ+ ν − σ ′, νk{h}γ ′s ′σ ′t ′τ ′|H − nEI |µ+ ν − σ, νk{h}γ sσ tτ 〉‖ . (3.29)

We are now, in principle, in a position to determine the spectraE(µνk{h}) for any n,
which implies also the appearance of states in which the spins can take values up to1

2n.
For the casen = 1 we already obtained the result in (2.17), though we used a simpler
procedure than the one outlined in this section. We shall though proceed to illustrate the
general supermultiplet method that leads to a secular equation for the energy in the cases
of n = 2 and 3, where for the first we shall consider both partitions{11} and{2}, while for
n = 3 we shall only state the result for{h} = {3} with a brief outline of its derivation.

4. Examples

From equations (3.29), (3.25) we note that the only matrix element in the secular equation
for which we do not have an explicit expression is

〈{h}γ ′s ′t ′‖R‖{h}γ st〉 (4.1)

and so we shall proceed to derive it and later substitute it in (3.29).

(a) The n = 2case

If we have two ordinary and sign spins of values1
2 their ket will be∣∣ 1

2
1
2sσ,

1
2

1
2tτ

〉
. (4.2)

Clearly for s = 1 the ordinary spin part will be symmetric and fors = 0 it will be
antisymmetric, and the same holds for the value 1 and 0 oft . If we want the ket to be
completely symmetric under exchange of both ordinary and sign spin, clearly we either
haves = 1, t = 1 or s = 0, t = 0, while if we want it to be antisymmetric under the same
circumstancess = 1, t = 0 or s = 0, t = 1.

Thus the states corresponding to the partitions{2}, {11} of S(2), and thus also of U(4)
[18], from which we delete the projection of the spins, can be written as

|{2}st〉 = |{2}11〉, |{2}00〉 (4.3)

|{11}st〉 = |{11}10〉, |{11}01〉 (4.4)
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as from complementarity considerations [17] the irreps of S(n) coincide with those of U(4).
Returning to the reduced matrix element (4.1), we note that

Rqq ′ = sq(1)⊗ tq ′(1)+ sq(2)⊗ tq ′(2) (4.5)

and in both the symmetric case{2} and the antisymmetric one{11} we can reduce (4.1) to
a factor of 2 by the matrix element ofsq(1)⊗ tq ′(1). Note that the indexu in siu, tju, has
now been put in parenthesis assi(u), tj (u), where in this caseu = 1 or 2. To be able to
calculate (4.1) for all four cases (4.3), (4.4) at a single step, we suppress the partition and
remember the definition (4.2) of our state so we can write (4.1) as

2〈 1
2

1
2s

′, 1
2

1
2t

′‖s(1)⊗ t (1)‖ 1
2

1
2s,

1
2

1
2t〉

= 2〈 1
2

1
2s

′‖s(1)‖ 1
2

1
2s〉〈 1

2
1
2t

′‖t (1)‖ 1
2

1
2t〉

= 3(−1)s
′+t ′ [(2s + 1)(2t + 1)]1/2W( 1

2s
1
2s

′; 1
21)W( 1

2t
1
2t

′; 1
21) (4.6)

where we made use of [23, relation (6.25)], andW is a Racah coefficient.
From the table of Racah coefficients in [23, page 227] we see that the reduced matrix

elements ofR in (4.6) take the values

〈{11}10‖R‖{11}10〉 = 0

〈{11}10‖R‖{11}01〉 = − 1
2

√
3

〈{11}01‖R‖{11}10〉 = − 1
2

√
3

〈{11}01‖R‖{11}01〉 = 0

(4.7)

〈{2}11‖R‖{2}11〉 = 1

〈{2}11‖R‖{2}00〉 = 1
2

〈{2}00‖R‖{2}11〉 = 3
2

〈{2}00‖R‖{2}00〉 = 0 .

(4.8)

Our next problem is to write the matrix (3.25) explicitly with the columns characterized
by sσ tτ and the rows bys ′σ ′t ′τ ′. In principle we would have to write nine matrices as
in Rqq ′ , q = +, 0,−; q ′ = +, 0,−. We note, however, that from the Clebsch–Gordan
coefficients in (3.25) we have

q = σ ′ − σ q ′ = τ ′ − τ (4.9)

and thus our first objective will be to identify what elementRqq ′ appears in each square of
our matrix from the selection rules (4.9).

(b) The energy spectrum for n = 2, {h} = {11}
We shall start with the case when{h} = {11} and to avoid using the full notationsσ tτ for the
column wheres = 1, t = 0 (or s = 0, t = 1) we shall indicateσ, τ asσ = 1, 0,−1, τ = 0̄
(or σ = 0̄, τ = 1, 0,−1) , i.e. we put a bar on the 0 when the value of either the ordinary
or sign spin is 0. The same convention will be followed for the rowss ′σ ′t ′τ ′, and we shall
order the values in columns and rows in a way that will be convenient for our later analysis.
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We note that the first (second) number appearing in the upper row or left-hand column
indicates always the projection of the ordinary (sign) spin. Thus we have the matrix

στ 0̄1 0̄0 0̄0 10̄ −10̄ 0̄ − 1
σ ′τ ′

0̄1 0 R0+ R0+ R−+ R++ 0
0̄0 R0− 0 0 0 0 R0+
00̄ R0− 0 0 0 0 R0+
10̄ R+− 0 0 0 0 R++

−10̄ R−− 0 0 0 0 R−+
0̄ − 1 0 R0− R0− R−− R+− 0

(4.10)

where in each box we put only theRqq ′ that appear from relations (4.9) and the zeros
are due to the fact thatR00, R±0, are not present in (3.26). The values ofRqq ′ in each
box with q, q ′ = +, 0,− can be evaluated from (4.7) and the elementary Clebsch–Gordan
coefficients in (3.25) given, e.g., in [23, page 225].

We are not only interested in the matrix elements ofRqq ′ appearing in each of the
blocks of (4.10), but also in the factorλqq ′ of (3.27) accompanying them in theH of (3.26).
Furthermore we wish to include also the 2T3 of (3.26) and deal withH −nEI , from which
we will get the matrix operator that eventually leads to the secular equation determining the
value of the energy. Thus our matrix (4.10) now takes the form

M ≡

στ 0̄1 0̄0 0̄0 10̄ −10̄ 0̄ − 1
σ ′τ ′

0̄1 2 − 2E 0 −√
2k 2iωη+ 2iωξ+ 0

0̄0 0 −2E 0 0 0 0
00̄ −√

2k 0 −2E 0 0
√

2k
10̄ −2iωξ+ 0 0 −2E 0 2iωξ+

−10̄ −2iωη+ 0 0 0 −2E 2iωη+
0̄ − 1 0 0

√
2k −2iωη+ −2iωξ+ −2 − 2E

(4.11)

where we already evaluated the matrix elements ofRqq ′λqq ′ with respect to the spin part of
the state (3.21) using (3.25) and (4.7).

We now have to transform the operator matrix (4.11) into a numerical one. If it had
been a 1×1 matrix we would have only to take the expectation value with the coresponding
orbital part of the single particle state. If it is a full matrix, we have to consider the orbital
part of the set of states (3.21) as forming a diagonal matrix whose rows and columns are
enumerated in the same way as (4.11). As the latter contains onlyη+, ξ+ operators we can
disregard in (3.21) the termην−, i.e. for simplicity takeν = 0. Furthermore, exp(ikx3) in
(3.21) is irrelevant, as equation (4.11) already contains the eigenvaluek. The orbital part
of the ket (3.21) reduces then to the form

|µ− σ 〉 = [(µ− σ)!]−1/2η
µ−σ
+ |0〉 . (4.12)

Using the compact notation introduced before

|{11}1σ, 00〉 = |σ 0̄〉 |{11}00, 1τ 〉 = |0̄τ 〉 (4.13)

we can enumerate rows and columns in the same way as in (4.11) and our diagonal matrix
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becomes

∆ =

στ 0̄1 0̄0 0̄0 10̄ −10̄ 0̄ − 1
σ ′τ ′

0̄1 |µ〉
0̄0 |µ〉
00̄ |µ〉
10̄ |µ− 1〉

−10̄ |µ+ 1〉
0̄ − 1 |µ〉

. (4.14)

To transform the matrix (4.11) to numerical form we just have to replaceM by ∆†M∆
carrying out the operations on the state (4.12), and thus get the matrix

∆†M∆

≡

στ 0̄1 0̄0 0̄0 10̄ −10̄ 0̄ − 1
σ ′τ ′

0̄1 2 − 2E 0 −√
2k 2iω

√
µ 2iω

√
µ+ 1 0

0̄0 0 −2E 0 0 0 0
00̄ −√

2k 0 −2E 0 0
√

2k
10̄ −2iω

√
µ 0 0 −2E 0 2iω

√
µ

−10̄ −2iω
√
µ+ 1 0 0 0 −2E 2iω

√
µ+ 1

0̄ − 1 0 0
√

2k −2iω
√
µ −2iω

√
µ+ 1 2− 2E

.

(4.15)

Setting the determinant of the matrix (4.15) to 0 we get a secular equation that gives
the eigenvalues ofE as function ofµ, k andω.

Before proceeding to analyse the secular equation, it is convenient to note that ifE is
taken out of the matrix (4.15) the second row and column are zero, which implies that one
of the values of the energy isE = 0 and the remaining matrix we have to analyse is of
dimension 5× 5, obtained from (4.15) when we suppress the second row and column. This
is a dimensionality that we would have expected from the Duffin–Kemmer [5] analysis for
the case of spin 0 if we replacedp by p − (e/2)(r × H), as their matrices are also of
dimension 5× 5.

Returning to the matrix (4.15), an elementary calculation of its determinant shows that
it gives the secular equation

E4[4E2 − 4 − 4k2 − 8ω2(2µ+ 1)] = 0. (4.16)

The appearance of the valueE = 0 reflects the cockroach nest effect discussed in [24].
The relevant physical energy is given by the square bracket expression in (4.16) when
equated to 0, leading to the equation

E2 = 1 + k2 + 2ω2(2µ+ 1). (4.17)

We now compare (4.17) forn = 2, {h} = {11} with (2.17) wheren = 1. Note first that
from (3.27)eH can be replaced by 2ω2 in (2.17). Furthermoreµ andn+ are equivalent as
both take integer values related with the number of quanta associated with the operatorη+.
They differ though by the fact that in (2.17) appears the projectionσ of the ordinary spin
of value 1

2 while it is absent in (4.17), which suggests that forn = 2, {h} = {11} we are
dealing with a particle of spin 0, instead of the spin1

2 we had forn = 1. This conclusion
could also be expected from the 5× 5 representation of Kemmer in a magnetic field.
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Going to the non-relativistic limit whose energy we denote byε we can write

E2 − 1 = (E + 1)(E − 1) ' 2ε (4.18)

and thus from (4.17) we have

ε = 1
2k

2 + ω2(2µ+ 1) (4.19)

which is precisely the result for a particle without spin [25].

(c) The energy spectrum for n = 2, {h} = {2}
As we mentioned in subsection (a), in the case that{h} = {2} the states (4.2) could either
haves = 1, t = 1 or s = 0, t = 0 and in (4.8) we gave the reduced matrix elements ofR

corresponding to this case.
The projections of the ordinary and sign spins are

s = 1 σ = 1, 0,−1 t = 1 τ = 1, 0,−1

s = 0 σ = 0 t = 0 τ = 0 .
(4.20)

As in the previous section we shall designate the projection 0 ofs = t = 0 by a bar
above and thusστ for s = t = 0 will be denoted as̄00̄, while whens = t = 1 we simply
put the corresponding numbers forστ .

Altogether we would have then 10 possibilities for the pairsστ and for convenience in
our future analysis we shall order them as indicated below:

01, 10,−10, 0 − 1; 11,−1 − 1, 00, 0̄0̄, 1 − 1,−1 − 1. (4.21)

Our first objective in the calculation would be to put these pairs of numbers in the order
indicated in (4.21) in the row and column of a matrix of the type (4.10). This would allow
us to put in each box a

Rqq ′ = Rσ ′−σ,τ ′−t (4.22)

as was done in (4.10) and where we made use of (4.9). As the process is trivial we do not
write explicitly the 10× 10 matrix corresponding to the 6× 6 one in (4.10).

Once we have though this matrix we have to multiplyRqq ′ by λqq ′ and obtain a matrix
M equivalent to (4.11). Finally we have to write the orbital part of the states of the problem
in the diagonal matrix form∆ of (4.14) but now with 10 components, and consider the
product equivalent to∆†M∆ of (4.15) to obtain the final 10× 10 numerical matrix.

As we are mainly interested in the behaviour of the energy as function the quantum
numberµ and the frequencyω, we shall only discuss the case whenk = 0, i.e. when
the particle is at rest in the direction of the magnetic field. In that case we see from
equation (3.23) that only terms of the formR±± remain asR0± have coefficients 0. This
implies another integral of motion as from (4.22) we have either

σ + τ σ ′ + τ ′ both even (4.23)
or

σ + τ σ ′ + τ ′ both odd. (4.24)

Thus our 10× 10 matrix breaks in two blocks along the diagonal, one in which
σ + τ, σ ′ + τ ′ in column and row are odd, i.e. when they take the first four values in
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(4.21), and another whenσ + τ, σ ′ + τ ′ are even when they take the last six values of
(4.21). We proceed then to give these two numerical matrices explicitly:

σ+τ odd:

στ 01 10 −10 0− 1
σ ′τ ′

01 2 − 2E 2iω
√
µ −2iω

√
µ+ 1 0

10 −2iω
√
µ −2E 0 −2iω

√
µ

−10 2iω
√
µ+ 1 0 −2E 2iω

√
µ+ 1

0 − 1 0 2iω
√
µ −2iω

√
µ+ 1 −2 − 2E

(4.25)

σ+τ even:

στ 11 −11 00 00 1− 1 −1 − 1
σ ′τ ′
11 2 − 2E 0 −2iω

√
µ −2iω

√
µ 0 0

−11 0 2− 2E 2iω
√
µ+ 1 −2iω

√
µ+ 1 0 0

00 2iω
√
µ −2iω

√
µ+ 1 −2E 0 2iω

√
µ −2iω

√
µ+ 1

0̄0̄ 2iω
√
µ 2iω

√
µ+ 1 0 −2E −2iω

√
µ −2iω

√
µ+ 1

1 − 1 0 0 −2iω
√
µ 2iω

√
µ −2 − 2E 0

−1 − 1 0 0 2iω
√
µ+ 1 2iω

√
µ+ 1 0 −2 − 2E

(4.26)

Setting the determinants of the above matrices to 0, we get the secular equations from
which the energy can be obtained as function ofµ andω, and also some information on
the spin with which the energies are associated.

In the case (4.25) whenσ + τ is odd the secular equation is

E2{E2 − 1 − 2ω2(2µ+ 1)} = 0 (4.27)

which has exactly the same form for partition{2} than for{11} in (4.17). Whenω,µ � 1
we can obtain the non-relativistic limit, and looking at (4.25) we see that main part of the
state is in the first block whose projection of the ordinary spin is 0, but the spin itself is,
from (4.2), s = 1. So it is the zero projection of the spin, in the direction of the magnetic
field, that is responsible for the similarity between (4.17) and (4.27), and not the spin itself.

In the case (4.26) whenσ + τ is even the matrix is 6× 6 and the secular equation in
more complex, but it can be obtained straightforwardly giving rise to the expression

E6 − 2E4[1 + 2ω2(2µ+ 1)] + E2[1 + 2ω2(2µ+ 1)]2 − 4ω4 = 0 (4.28)

which is a cubic equation inE2, but in which the term [1+ 2ω2(2µ+ 1)] also appears.
Again in the non-relativistic limit we have a behaviour similar to (4.19) but now from

the matrix (4.26) we see the state is associated withσ = 1, so the spin besides being 1 also
has a projection 1 and this complicates greatly the spectrum as function ofµ,ω as is clear
from (4.28).

We have seen that the results for the energy and the spin coincide in the approach we
have followed, with those of Kemmer [5] and Duffin when in their formulation of relativistic
particles of spin 0 and 1, one introduces a magnetic field. It is interesting to note though
that our procedure is applicable to any valuen, and thus to particles that can go up to spin
1
2n, and to stress this generality we shall consider in the next subsection the casen = 3.

(d) The energy spectrum for n = 3, {h} = {3}
From the discussion in section 3, the only part of our analysis that requires care for an
arbitraryn, is the matrix element (3.25) which, in the particular problem indicated in the
title of this subsection, is given by

〈{3}s ′σ ′t ′τ ′|Rqq ′ |{3}sσ tτ 〉. (4.29)
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Because we are dealing with a symmetric representation of the U(4) group there is no
need of the extra indicesγ ′, γ and besidess ′ = t ′, s = t and they can only have the values
3
2 and 1

2.
Again because of the symmetric nature of the representation{3} of U(4) or, equivalently,

of the group S(3), the expression (4.29) can be written as

3〈{3}s ′σ ′t ′τ ′|sq(1)⊗ tq ′(1)|{3}sσ tτ 〉. (4.30)

To evaluate (4.30) it is convenient to decompose bra and ket in the part that have index 1
in ordinary and sign spin and the rest that has to do with indices 2 and 3. This can
be achieved with the help of reduced Wigner coefficient of U(4) or, equivalently, of an
appropriate fractional parentage coefficient as discussed, among other papers, in [22]. Once
this decomposition is achieved the matrix element (4.30) can be derived using standard
Racah analysis.

After this step for the casen = 3, {h} = {3} we just follow the same procedure that we
discussed previously for the case{h} = {11} and {h} = {2}. We use a similar notation for
the projection of the ordinary and sign spin as we did before, i.e.

s = t = 3
2 σ = 3

2,
1
2,− 1

2,− 3
2 τ = 3

2,
1
2,− 1

2,− 3
2

s = t = 1
2 σ = 1

2,− 1
2 τ = 1

2,− 1
2 .

(4.31)

In principle we have 20 possibilities for the values ofστ from (4.31), but again we
shall restrict ourselves to the casek = 0, i.e. when the particle is at rest in the direction of
the magnetic field, and then there is the selection rule thatσ + τ is either odd or even and
this reduces the matrices to 10×10. We give in (4.32) a table of the numerical matrix when
σ + τ is odd, from which we could extract the secular equation by setting its determinant
to 0. We shall not carry out this last step as it clearly gives an equation, of the 10th degree
in E whose analysis is not simple. Rather we wish only to stress that we have a technique
that allows us to obtain and solve the relativistic equation for a particle with arbitrary spin
subjected to an interaction by reducing it to a supermultiplet type of problem where we
have the ordinary and sign spins and thus a U(4) type of symmetry.

5. Conclusions

The example discussed in this paper was one of a free particle with arbitrary spin in a
magnetic field because, when formulated in its matrix representation, it always gives rise to
finite matrices and thus its solution, at least with the use of computers, will give us exact
values for the energies.

The formalism though can be extended to a particle with arbitrary spin in any potential
and, in particular, to the Coulomb one. The analysis has then to be carried in a variational
manner, and in its more convenient form, through the use of harmonic oscillator states for
the orbital part of the problem, while the ordinary- and sign-spin part continue to be given
by basis of irreducible representations of the U(4) group.

The final results for the energy levels would of course not be exact, but going to a
sufficient number of quanta they could give reasonable approximations to the way in which
the spin of the particle affects the spectra of the problem.

This program is being implemented at the present time together with other aspects
involving the representation of the Lorentz group in the problem, and this paper is thus
part I of a series.



Supermultiplets and relativistic problems: I 6041

Acknowledgment

The authors are indebted to Professor N Kumar for suggesting the application of the
formalism to a particle in a magnetic field.

Appendix: Commutation relations of the generators of U(4)

The generators of u(4) are given in (3.9) to which we have to add the unit operatorÎ ⊗ Ǐ .
As the operatorssiu, tiu commute withsiv, tiv if v 6= u, it would be enough to prove the
commutation relation (3.11) by considering the corresponding ones for the operators

si ⊗ Ǐ Î ⊗ ti si ⊗ tj . (A.1)

As we have the following relations:

[si, sj ] = iεijksk [ti , tj ] = iεijktk

sisj = 1
4δij + 1

2iεijksk ti tj = 1
4δij + 1

2εijktk
(A.2)

we immediately conclude that

[si ⊗ Ǐ , sj ⊗ Ǐ ] = iεijksk ⊗ Ǐ [Î ⊗ ti , Ǐ ⊗ tj ] = iεijkÎ ⊗ tk

[si ⊗ Ǐ , Î ⊗ tj ] = 0 [si ⊗ Ǐ , sj ⊗ tk] = iεij`s` ⊗ tk

[Î ⊗ ti , sj ⊗ tk] = iεik`sj ⊗ t`

[si ⊗ tj , sk ⊗ t`] = sisk ⊗ tj t` − sksi ⊗ t`tj

= [
1
4δik + 1

2iεikmsm
] ⊗ [

1
2δj` + 1

2iεj`tn
]

− [
1
4δki + 1

2iεkimsm
] ⊗ [

1
4δ j̀ + 1

2iε j̀ntn
]

= 1
4iεikmsmδj` + 1

4δik iεj`ntn

(A.3)

and from (A.3) the commutation relations (3.11) follow immediately.
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