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Abstract. Equations for relativistic particles for arbitrary spin have been of interest since Dirac
original work for spin%, but they involved either bothersome constraints or start with as many
Dirac equations as are required to get the derived spin from its or@n\iﬂalue. We first

show that it is possible to have just one equation involving’s and g's matrices that give
possibilities up to%n for the spin. We then decompose ths and ’s into direct products of
ordinary spin matrices and a new type of them that we call sign spin. The problem reduces then
to one in terms of the generators of a U(4) group entirely similar to the one in the spin—isospin
theory of nuclear physics and hence the name of supermultiplets in the title. Using then the
techniques of the latter we discuss the problem of a free particle in a magnetic fiele=far 2

and 3 or equivalently eigenvalues for spin%,OJ. and%, and the energies are given as solutions

of elementary algebraic equations.

1. Introduction

The equation of a relativistic particle of sp%wwas proposed long ago by Dirac [1] and it
had an enormous success in many applications. The extension of the formalism to arbitrary
spin has given rise to a veritable flood of papers in the last 50 years. Dirac himself [2] and
Fierz and Pauli [3] made proposals, but which were restricted by bothersome constraints.
Bargmann and Wigner [4] started not with one but a system Bfirac type of equations

and obtained a patrticle of spén by restricting the wave function to the symmetric solution
under permutation. Kemmer [5] managed to obtain a Dirac type of equation but only for
spins 0 and 1. In fact Mathews [6], under the strict restrictions with which he worked argued
that there could be no relativistic equations with spin higher than 1. Bhabha [7] on the other
hand again returned to the possibility of arbitrary spin, though connecting them later with
representations of SO(5) group as discussed by Krajcik and Nieto [8]. Weinberg [9] derived
the Feynman rules for any spin in which the propagators involve matrices that transform
like symmetric traceless tensors of rank 2\ikitin [10] and his collaborators deal elegantly
with relativistic particles of arbitrary spin in Coulomb and magnetic monopole fields.

In view of the above references, and possible hundreds more that seem less relevant,
one could well ask if there is any reason to deal with the subject of a relativistic particle
with arbitrary spin with or without interaction. The authors had two main reasons for getting
into this crowded field. The first one was that they decided to follow the Barut approach
[11] that they used [12] to get a single relativistic equation for a many-body problem, and
particularized it to a single particle thus having only one positioand momentunp
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vectors but manyx’s, g’s in their equation. The second is that they noticed that and

B’s could be represented by a direct product of tdrdinary spin s, and a new concept
with the same properties as the latter that they callgd spint. Thus the problem became
very similar to the one in nuclear physics in which we have ordinary spin and isospin, and
the main symmetry group goes from U(2) to U(4), where the latter is associated with the
supermultiplets indicated in the title.

The formalism developed could be applied to any type of interaction but for simplicity,
and to get results that involved no approximation, we restricted ourselves to the problem in
a constant magnetic field.

We could start with a Lorentz invariant formulation of the paper as we did in a recent
publication where we used a time like unit four vectey,), © = 0, 1, 2, 3 and applied the
analysis to a Dirac oscillator interaction [13]. We proceeded then to discuss in detail the
energy spectra of the problem as function of the spin of the particle in the definite frame of
reference wheréu,) = (1,0, 0, 0).

For the problems to be discussed in this paper we directly analyse them in the last frame
of reference, i.e(x,) = (1,0, 0, 0) as the extension to an arbitrary one can be done with
the boosts indicated in [13].

We shall start by analysing the well known problem [14] of a relativistic particle of
spin% in a magnetic field as it will provide us, in a novel way, with a number of results
that we will require in connection with the problem of arbitrary spin.

2. Relativistic equation for a spin—% particle in a magnetic field

The well known equation [14] for a particle with the characteristics indicated in the title is
(-B+ By =Ey (2.1)
where we use units = m = ¢ = 1, m is the mass of the particle,

(05 =52

whereo the vector of Pauli spin matrices,
B=p—(e/2)(r xH) (2.3)

where p is the momentum of the particle; its position, e its charge andH the vector
associated with the magnetic field.

The matricesx, 8 are of dimension 4 4 but we could convert them into direct products
of 2 x 2 by introducing the definition

i_1o _1/0 1 170 i 171 o0
=lo 1 1=5\1 o 22=5\i o 3=35\0 -1

(2.4)
S E S O B F BRCEH EI
0 1 2|11 0 21i O 2|10 -1
(2.5)
Clearly then we havex and 8 as the direct products
a=4s®n B=21®1t;. (2.6)
The matrices;,i = 1, 2, 3 are those of ordinary spi%l, whilers;,i =1,2,3,..., which

we distinguish by square instead of round brackets, have the same definition as those of
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but play a very different role and we shall call thesign spinas we shall later see that
they are associated with the sign of the energy. The set of matrices (2.4), (2.5) are identical
in form to those appearing in supermultiplet theory as introduced by Wigner [15], but in

which thet;, i = 1, 2, 3 were interpreted as the components of the isotopic spin.
Going back to equation (2.1) we can see from (2.4), (2.5) that it can be written as
[4(3 ®n) - -B+2(0® ;3)] v =Ey. 2.7)

As is usual in the case of ordinary spin, we could expressythian terms of two
components with sign spig1, which we could designate as

_ yh+ 2
=] @8)
and in that case from (2.5), equation (2.7) decomposes into two equations
2s-[p—(e/2(r x )]y = (E — Dy (2.9)
2s-[p—(e/(r x )]y = (E+ D). (2.10)

Multiplying the first by (E 4+ 1) and substituting in the second, we get for the
equation
[(P?2 + P2+ p3) + (®H? /B (x% + x3) + eH(x1p2 — x2p1) + 2eHs3] ¥y = (E — Dy,
(2.12)
where we assumet to be a constant and in the direction.af
The eigenvalues and eigenfunctions are well known in terms of cylindrical coordinates
[14] but we will rewrite it in terms of creation and annihilation operators, to have them in

a form more convenient for our later discussion of the problem with arbitrary spin.
Let us start by defining the creation and annihilation operators in the glane;) as

Y [E R G AR GO

(2.12)

with i = 1,2. Furthermore we introduce spherical components of these operators in the
form

ne = \1[2(:71 tiny) &= jé(sl Fi&). (2.13)
Equation (2.11) takes then the form
[eH(2n+&% + 1) + p3 + 2eHss] ¥y = (E® — Dy (2.14)
The eigenfunctions of (2.14) can be written in the form of a ket
Inin_ko) = ’%m)ém Xo (2.15)
where
10) = =2 expl-3(x7 + x3)] (2.16)
is the ground state and. take the integer values. =0,1,2,... . The x, stands for the

ordinary spin function with the projectionr = 3.
The eigenvalue of the energies are then

E?  =1+eH2n, +1+20)+k? (2.17)

niyko
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and it does not depend on_, so there is an infinite degeneracy in this quantum number.
As a last point concerning this elementary problem it is useful to expraBsappearing

in (2.7) in terms of creation and annihilation operators, and particularly to notice that only

those with thet+ sign, i.e.n,, &1 will be present. For this purpose we note that in spherical

components.

s-B= Z(—l)qs_qu g=+,0— (2.18)
q
with
1( +is0) B 1(3 +iBy) Bo=B (2.19)
S+ = — (S Ky = —_— = S0 — 3. .
+ ZFﬁ 1 2 + :F\[2 1 2 0 3 0 3
From the definition (2.3) oBB and replacing;, x;,i = 1, 2 by n4, £*, as follows from
(2.12), (2.13), we arrive at the expression
s+ B =i(eH)"?(5- + € s1) +s0p3. (2.20)

Matrix elements of this operator with respect to states of the form (2.14), will be relevant
for the determination of the energy spectrum as function of the spin of a relativistic particle
in a magnetic field.

3. Relativistic equation for a particle of arbitrary spin in a magnetic field

As is well known the Dirac equation for a system iofnon-interacting particles can be
written as

n

Y (o pu+ BV =EY (3.1)
u=1

where
B=1RI® - QIQBRI---QIRI (3.2

is a direct product in 4« 4 matrices wheres — 1 of them are unity and in the position
we have a8 of the form (2.2). A similar definition holds for the,.

The validity of (3.1) is justified [16] by the fact that by squaring, rearranging, squaring
again, etc, and using the anticommuting properties ofthes, we can obtain a2degree
algebraic equation involving only thg and thep, and its 2 roots turn out to be

E=x/p2+1x /p2+1... £ [p2+1 3.3)

as the Einstein relation leads us to expect.

Nothing prevents us considering the case when all the momenta are equpl, +¢.
p,u =12 ...,n and in that case we have an equation for a single particle, but as each
«,, is associated with spié, the presence of of them indicate that our particle would, in
general, have a mixture of spins with values

nin—1,....3 or 0. (3.9

If such a type of particle is in a magnetic field we just have to repfabg B of (2.3)
and have the equation

Y (o B+ B)Y =nEy. (3.5)

u=1
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Note that in (3.5) the energg of (3.1) is replaced by E as each of the terms in the
summation on the left-hand side of (3.5) makes a contribution and we would like to denote
the energy as the average of these contributions. This point was discussed in detail in [13].

We would like the solutions of the equation (3.5) to be characterized by a definite spin,
at least for that part of them that have the highest positive value for the energy. This is
feasible as Bargmann and Wigner [4] already indicated that in the case of free particles
the solution corresponding to the symmetric representation of the permutation group has
spin n.

Nzote that equation (3.5) is invariant under permutation of:ithiadices of thea,,, 8,
matrices and thus we could characterize our solutions by irreps of the permutation group
S(n). This we shall do but with the help of its complementary U(4) group [17, 18].

To begin with we return to the development (2.6) of ta@and g but now with an index
u,i.e.

o, =45, Q 1y, (3.6)

By =2I ® 13, (3.7)
where nows,, t;,, t3, are direct products of 2 x 2 matrices, whera — 1 of them are unity
and in the positiom appears an; or¢;,i = 1, 2, 3 of the form (2.4) and (2.5), respectively.

From eqautions (3.6), (3.7) we see that equation (3.5) can be written as

3
u=1 i=

[(siu ® tiu)Bi] + 2i ® t3u} ’ﬁ = nE‘ﬁ (38)
i=1
where instead of a scalar product as in (2.7) we prefer to write it in Cartesian components
i =1,2,3 and sum over them.

We now proceed to show that besides the operBtpthe other terms appearing in (3.8)
are part of the generators of a U(4) group complementary to the permutation symmetry group
of the problem. We start by defining

n n n
SiEZSiu@)I, TiEZI@)Iim RijEZSiu®lju~ (3.9)
u=1 u=1 u=1
As we have the commutation relations
[Sius Sju] = i€jkSku [Siu, 8;u] =0 if u#v (3.10)

and similarly for the components, of the sign spin, while of course],t;,] = 0, we
show in the appendix that the operators (3.9) satisfy the commutation relations
[Si, S;] = i€ijuSi [T:. T;] = i€;jTx [Si.T;] =0
[Si, Rjx] = i€ijeRuk [Ti, Rix] = i€ixeR)e (3.11)
[Rij, Rie] = %iEikmSm(SjZ + %i5ik6jenTn .

From the commutation rules (3.11) we conclude that the operators (3.9) together with
the unit operatod ® I, are the 16 generators of a U(4) group [19], that is complementary
to the S(n) group of permutations acting on each ordinary and sign spin that have the index
u=12...,n[17, 18].

The irreps of U(4) are characterized by a partiti@nhohshs} = {h} which at the same
time is the partition characterizing(n) and thus [18]

hi+hy+hs+ha=n h1 > hy > hz > hs > 0. (3.12)
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To define the states associates with this partition we can use the Gelfand—Zetlin scheme
[20], or more conveniently use a chain of subgroups of U(4) that are more relevant to the
problem. Clearly one that has this type of property is

U >UQR U2 (3.13)

where U(2), U(2) are associated respectively with the ordinary and a sign spin whose
generators aré;, 7;,i = 1,2, 3.

The states are then characterized by the partitigras well by the eigenvalues of the
Casimir operator of the ordinary and sign spin, i.@.+ 1), # (¢ + 1). Furthermore the U(2)
group has an O(2) subgroup whose irreps could be characterized by arviriddke case
of the ordinary spin and for the sign spin. Thus the basis of the irreducible representations
(BIR) of the chain of group (3.12) can be denoted by the ket

[{h}ysotT). (3.14)

y is an index that distinguishes the representatiens) in {#} when they are repeated [18].
The ket (3.13) can be determined in terms of elementary permissible diagrams (EPD)
by a procedure similar to that used in [21] for the chain

U®B) D 0(3) D 0(2 (3.15)

and we plan to follow this program in a future publication, but here we only care that this
type of ket exists, and in the examples that we shall discuss at the end of this paper, we
shall obtain it explicitly in a more elementary manner.

We now return to our basic equation (3.8) which, in the notation (3.9), can be written as

3
[4 (RinB) + 2T3] v =nEy. (3.16)
i=1

Immediately we note that (3.16) besidBsthat depends on the coordinates, momenta and
‘H, it has only 4 generators of our U(4) group:, 75, = 1,2, 3 and thusy could be
characterized by an irrefh} of U(4).To find other integrals of motion we note that (2.20)
would apply also if the single spisis replaced by the total on§ = " _; s, and thus we

see thatS - B contains onlyy,, £*. Thus as there are no terms, £~ the number operator
n_-£& 7, is also an integral of motion characterizing the wave function with the eigenvalue
n_. Furthermore as we have chosen the direction of the vétas x3, the total angular
momentum in that direction is also an integral of motion, i.e.

J3 = (xap2 — x2p1) + ZS?M (3.17)
u=1
and its eigenvalue, that we denote pywould also characterizg .

Now, as in [13], we need to obtain the set of states in terms of which we can represent
the operator on the left-hand side of (3.16) as a finite matrix. To do this we first note that
for the configuration part of these states we can use (2.15) suppregsinghile for the
spin part we can employ (3.14) to obtain kets of the form

(M|O)> és3|{h)ysott) (3.18)
nyln_!

which now we wish to rewrite so that the integrals of motion for the operator in the left-hand
side of (3.16) appear explicitly.

For this purpose we note that the orbital angular momentum can also be written as

Ly =x1ps—xop1 =& —n_&~ (3.19)
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so thatu associated withy; takes the value
UW=ny—n_4+o. (3.20)

Asn_ is also an integral of motion we shall denote from now om asd thus:; = u+v—o.
Substituting these results in (3.17) we obtain the ket

ntv—o
N4 n-

Vi +v—o)h!

From the above discussion we see that the matrix elements of the operator on the left-
hand side of (3.16) with respect to the states (3.21) will be diagonal in the indidg&},
and as for a fixedh} we have only a finite number of values fer s, ¢, our matrix will
be finite. By diagonalizing it we will get the values of the energy as function,of, k{h}
and the last one, which is the irrep of the U(4) group, will also give to us information of
the spins associated with given energies.

We now need to express the matrix elements of the operators on the left-hand of (3.16)
explicitly with respect to the states (3.21). For this purpose its convenient to express the
operator in question in spherical rather than Cartesian indices. For this objective we note
the relation

lw+v—o,v, k{hlysott) = < |O))eikx3|{h}y(rtr) . (3.22)

e = ;é<—r+u +) (3.22)

where the index 1 is Cartesian andare spherical. Furthermore, we can write

3 n 3
H=) ARi1B)+2T3= Z {42 [(siuBi) @ tiu] } +2T3
im1 = U ia

" . 1
= Z {4 [l(eH)1/2(ﬁ+S—u + %_+s+u) + Soup?)] ® 7(_t+u + tu)} + 2T3
u=1 \/é

eH\Y?
=4 (2) [+ (=R +R__) +&E"(—Ry; + R, )]

—i—jz(—ROJr + Ro-)p3 + 2T3 (3.23)
where we made use of the fact that the operairg, , £* that depend only on coordinates
and momenta of course commute with the sign and ordinary spitasds;,, and we used
also the development (2.20) 8f B, as well as the notatio#t, O, — of spherical components.

The matrix element off of (3.22) with respect to the states (3.21) can now be obtained
straightforwardly by noting that

Nilny) = vny +1n+1) £ Iny) = /nylng — 1) pslk) = klk) (3.24)
while the more relevant part is to obtain matrix elements of the type
({h}y's'a’t't"|Ryy [{h}y sott) = (so, 1q|s'a")(tT, 1q[tT") ({h}y s't | R || {h}y st)

(3.25)

where we made use of the Wigner—Eckart theorem to derive the right-hand side in which
(-]-) are Clebsch—Gordan coefficients. The reduced matrix elemeRt ¢dn be obtained
using fractional parentage and Racah coefficients [22] as it is identical in form to the one
appearing in ordinary supermultiplet theory [15], where, besides the ordinary spin, one is
dealing with isospin instead of sign spin.
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It is also important to obtain the full matrix element of the operdfoof (3.23) in the
basis (3.21) and for this purpose it is convenient to wkten the form

H = lyyRyq + 2T (3.26)
9.9
wherel,, is defined by

)\.7+ = _4|C()7]+ A__ = 4|(1)7]+ )\,0+ = _2\/ék (3 27)
oy = —BiwET Al =diwET Ao = 2V/2% '

and where we replacegs, which is an integral of motion of the problem, kyin view of

the appearance of eipxs) in (3.21). Furthermore, we shall from now on use the notation

w = (eH/2)Y?. (3.28)

To obtain the secular equation that will give use the different energies associated with
the integrals of motioru, v, k, {h} we need to consider from (3.16), (3.23) the numerical
matrix

I +v =o', vk{h}y's'c't't'|H —nEI|pn + v — o, vk{h}ysott)| . (3.29)

We are now, in principle, in a position to determine the spegttavk{h}) for anyn,
which implies also the appearance of states in which the spins can take value%mp to
For the casen = 1 we already obtained the result in (2.17), though we used a simpler
procedure than the one outlined in this section. We shall though proceed to illustrate the
general supermultiplet method that leads to a secular equation for the energy in the cases
of n = 2 and 3, where for the first we shall consider both partititkly and{2}, while for
n = 3 we shall only state the result f¢h} = {3} with a brief outline of its derivation.

4. Examples

From equations (3.29), (3.25) we note that the only matrix element in the secular equation
for which we do not have an explicit expression is

({hy's't | RII{h}y st) (4.1)
and so we shall proceed to derive it and later substitute it in (3.29).

(&) The n = 2case
If we have two ordinary and sign spins of valu§$heir ket will be
1150, Lirz). (4.2)

Clearly fors = 1 the ordinary spin part will be symmetric and for= 0 it will be
antisymmetric, and the same holds for the value 1 and A df we want the ket to be
completely symmetric under exchange of both ordinary and sign spin, clearly we either
haves =1, =1 ors =0, ¢t = 0, while if we want it to be antisymmetric under the same
circumstances =1, =0o0rs =0, = 1.

Thus the states corresponding to the partiti@®ls {11} of S(2), and thus also of U(4)
[18], from which we delete the projection of the spins, can be written as

[{2}s1) = 1{2}11), |{2}00) (4.3)

[{11}st) = [{11}10), |{11}01) 4.9
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as from complementarity considerations [17] the irreps af) $6incide with those of U(4).
Returning to the reduced matrix element (4.1), we note that

Ryy =5,0) ®1,(1) +5,(2) @ 1,(2) (4.5)

and in both the symmetric ca$@2} and the antisymmetric ond.1} we can reduce (4.1) to

a factor of 2 by the matrix element 6f (1) ® #,,(1). Note that the index in s;,, t;,, has

now been put in parenthesis asu), t; (1), where in this case = 1 or 2. To be able to
calculate (4.1) for all four cases (4.3), (4.4) at a single step, we suppress the partition and
remember the definition (4.2) of our state so we can write (4.1) as

2(%%3/, %t ||s(1)®l(1)||%% %%”

NI

=2(335'IsWl339) (53t 11 D11330)

=3(=D""[2s + D2 + DIPwW(sks Inwdele; 1) (4.6)

where we made use of [23, relation (6.25)], ditidis a Racah coefficient.
From the table of Racah coefficients in [23, page 227] we see that the reduced matrix
elements ofR in (4.6) take the values

({1110| R[{11}10) = O
((11}10] R|I{11)01) = —1v/3
(1101 R|I{11)10) = —1v/3
({11}01R({11}01) = O

4.7)

{2N1RI{2}1]) =

{ 1
(2111 R(1{2}00) = }

2 (4.8)
({2}00[ R(I{2}11) = 3
({2}00|| R|I{2}00) = O

Our next problem is to write the matrix (3.25) explicitly with the columns characterized
by sott and the rows by’c’t’'t’. In principle we would have to write nine matrices as
in Ryy,q = +,0,—; 9" = +,0,—. We note, however, that from the Clebsch—Gordan
coefficients in (3.25) we have

q:a’—a q/=‘L’/—‘L’ (49)

and thus our first objective will be to identify what elemety, appears in each square of
our matrix from the selection rules (4.9).

(b) The energy spectrumrfa = 2, {h} = {11}

We shall start with the case whéh} = {11} and to avoid using the full notatiorw 7 for the
column wheres =1, =0 (ors = 0,7 = 1) we shall indicater, t aso = 1,0, -1, 7 =0

(oroc =0,7=1,0,—1) , i.e. we put a bar on the 0 when the value of either the ordinary
or sign spin is 0. The same convention will be followed for the retws:'t’, and we shall
order the values in columns and rows in a way that will be convenient for our later analysis.
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We note that the first (second) number appearing in the upper row or left-hand column
indicates always the projection of the ordinary (sign) spin. Thus we have the matrix

8
S
|
H
o
o
|
'—\

oT 01 00

o't

01 0O Ro Roy R, R, O
00 | R O O 0 0 Ro:
00 | Rp. O 0 0 0 Ro:
10 (R, O 0 0 0 Ry
-10|R._ 0 O 0 0 R_.

0-1| 0 Ro- R R_ R\ O

(4.10)

where in each box we put only th®,, that appear from relations (4.9) and the zeros
are due to the fact thakRoo, R+, are not present in (3.26). The values Bf, in each

box with ¢, ¢’ = 4, 0, — can be evaluated from (4.7) and the elementary Clebsch—Gordan
coefficients in (3.25) given, e.g., in [23, page 225].

We are not only interested in the matrix elementsRyf, appearing in each of the
blocks of (4.10), but also in the factay, of (3.27) accompanying them in thé of (3.26).
Furthermore we wish to include also th&;2of (3.26) and deal wittH —nE1, from which
we will get the matrix operator that eventually leads to the secular equation determining the
value of the energy. Thus our matrix (4.10) now takes the form

o1 01 00 09) 10 -10 0-1

o't
01 | 2—2E 0 —v2k 2iwn, 2iwtt 0
00 0 —2E 0 0 0 0

M= % V2% 0 —2E 0 0 2k (4.11)

10 | —2iwtt 0 0 —2E 0 2iwe™t

—10 | —2iwopt O 0 0 —2E 2iwn .,

0-1 0 0 V2 —2iwn, -—2iwtt —-2-2E

where we already evaluated the matrix element®Qfi,,. with respect to the spin part of
the state (3.21) using (3.25) and (4.7).

We now have to transform the operator matrix (4.11) into a numerical one. If it had
been a X 1 matrix we would have only to take the expectation value with the coresponding
orbital part of the single particle state. If it is a full matrix, we have to consider the orbital
part of the set of states (3.21) as forming a diagonal matrix whose rows and columns are
enumerated in the same way as (4.11). As the latter contains;enlyt operators we can
disregard in (3.21) the term”, i.e. for simplicity takev = 0. Furthermore, exfkxs) in
(3.21) is irrelevant, as equation (4.11) already contains the eigenkallide orbital part
of the ket (3.21) reduces then to the form

ln—o) =[w—o)172710). (4.12)
Using the compact notation introduced before
1{11}10, 00) = |0 0) 1{11}00, 17) = |Or) (4.13)

we can enumerate rows and columns in the same way as in (4.11) and our diagonal matrix
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becomes

ot 01 00 @ 10 -10 0-1
o't
01 | |w)
00 )
00 [ 1)
10 luw—1)
—10 lu+ 1)
0-1 )

To transform the matrix (4.11) to numerical form we just have to repldey ATMA
carrying out the operations on the state (4.12), and thus get the matrix

ATMA

(4.14)

ot 01 00 00} 10 -10 0-1
o't
01 2-2E 0 —V2k 2ioyr  2ioyp+1 0
_| 00 0 —2E 0 0 0 0
| 00 —V/2k 0 —2E 0 0 V2k
10 —2iw /1 0 0 —2E 0 2w /1t
-10 | 2w/ +1 O 0 0 —2E 2w/ + 1
0-1 0 0 V2 —2iw/i —2ioJu+l 2-2E

(4.15)

Setting the determinant of the matrix (4.15) to O we get a secular equation that gives
the eigenvalues of as function ofu, k andw.

Before proceeding to analyse the secular equation, it is convenient to note fhas if
taken out of the matrix (4.15) the second row and column are zero, which implies that one
of the values of the energy i = 0 and the remaining matrix we have to analyse is of
dimension 5x 5, obtained from (4.15) when we suppress the second row and column. This
is a dimensionality that we would have expected from the Duffin—Kemmer [5] analysis for
the case of spin 0 if we replacaa by p — (¢/2)(r x H), as their matrices are also of
dimension 5x 5.

Returning to the matrix (4.15), an elementary calculation of its determinant shows that
it gives the secular equation

E*[AE? — 4 — 4k? — 80°(2u + 1)] = 0. (4.16)

The appearance of the valde= 0 reflects the cockroach nest effect discussed in [24].
The relevant physical energy is given by the square bracket expression in (4.16) when
equated to 0, leading to the equation

E?=14k*+20°2u +1). (4.17)

We now compare (4.17) for = 2, {h} = {11} with (2.17) wheren = 1. Note first that
from (3.27)e’H can be replaced by« in (2.17). Furthermorg. andn, are equivalent as
both take integer values related with the number of quanta associated with the operator
They differ though by the fact that in (2.17) appears the projectiaf the ordinary spin
of value% while it is absent in (4.17), which suggests that fio= 2, {h} = {11} we are
dealing with a particle of spin 0, instead of the séirwe had forn = 1. This conclusion
could also be expected from thex55 representation of Kemmer in a magnetic field.
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Going to the non-relativistic limit whose energy we denotecbye can write
E?—1=(E+1)(E—-1) ~2¢ (4.18)
and thus from (4.17) we have
€=k +o*(2u+1) (4.19)

which is precisely the result for a particle without spin [25].

(c) The energy spectrumrfa = 2, {h} = {2}

As we mentioned in subsection (a), in the case that= {2} the states (4.2) could either
haves =1,r =1 ors =0,r = 0 and in (4.8) we gave the reduced matrix elementg of
corresponding to this case.

The projections of the ordinary and sign spins are

s=1 o0=10 -1 t=1 t=10-1

(4.20)
s=0 o=0 t=0 7=0.

As in the previous section we shall designate the projection ©-efr = 0 by a bar
above and thus t for s =+ = 0 will be denoted a$0, while whens = ¢ = 1 we simply
put the corresponding numbers fot.

Altogether we would have then 10 possibilities for the pairsand for convenience in
our future analysis we shall order them as indicated below:

01,10,—-10,0—1;11,—-1—1,00,00,1—1, -1 — 1. (4.21)

Our first objective in the calculation would be to put these pairs of numbers in the order
indicated in (4.21) in the row and column of a matrix of the type (4.10). This would allow
us to put in each box a

qu’ = Ra’fa,r’ft (422)

as was done in (4.10) and where we made use of (4.9). As the process is trivial we do not
write explicitly the 10x 10 matrix corresponding to the>66 one in (4.10).

Once we have though this matrix we have to multigly,r by 1,,, and obtain a matrix
M equivalent to (4.11). Finally we have to write the orbital part of the states of the problem
in the diagonal matrix formA of (4.14) but now with 10 components, and consider the
product equivalent teATMA of (4.15) to obtain the final 1& 10 numerical matrix.

As we are mainly interested in the behaviour of the energy as function the quantum
number . and the frequency, we shall only discuss the case when= 0, i.e. when
the particle is at rest in the direction of the magnetic field. In that case we see from
equation (3.23) that only terms of the forR.. remain asRq+ have coefficients 0. This
implies another integral of motion as from (4.22) we have either

o+t o' +1 both even (4.23)
or
o+ o' +1 both odd (4.24)

Thus our 10x 10 matrix breaks in two blocks along the diagonal, one in which
o + 1,0’ + t/ in column and row are odd, i.e. when they take the first four values in
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(4.21), and another whetn + 7,0’ 4+ t’ are even when they take the last six values of
(4.21). We proceed then to give these two numerical matrices explicitly:

oT 01 10 -10 0-1
o't
. 01 2—2E 2w/ —2iw/u+1 0
o+71 odd: 10 ooy oF 0 2wy (4.25)
—10 | 2iw/n+1 0 —2E 2iw/u +1
0-1 0 2w/ —2iw/pu+1 —-2-2E
o+71 even:
ot 11 —11 00 00 1-1 -1-1
o't
11 [2-2E 0 Dok 2wy 0 0
11 0 2-2E  2iovp+1l —2ioJu+1 0 0 (4.26)
00 2iw. /1t —2iw/+ 1 —2E 0 2iwﬁ —2iwo/+1 ’
0 | 2oyg 2ioyp+l 0 —2E Qo —2iwo/p+1
1-1 0 0 —2iw /It 2oy —2—2E 0
“1-1| o 0 2+l 2ioyu+1 0 _2_2F

Setting the determinants of the above matrices to 0, we get the secular equations from
which the energy can be obtained as functionuofind w, and also some information on
the spin with which the energies are associated.

In the case (4.25) whes + 7 is odd the secular equation is

EY{E? —1—20°2u+1}=0 (4.27)

which has exactly the same form for partiti¢2} than for{11} in (4.17). Whenw, u <« 1

we can obtain the non-relativistic limit, and looking at (4.25) we see that main part of the

state is in the first block whose projection of the ordinary spin is 0, but the spin itself is,

from (4.2),s = 1. So it is the zero projection of the spin, in the direction of the magnetic

field, that is responsible for the similarity between (4.17) and (4.27), and not the spin itself.
In the case (4.26) whes + 7 is even the matrix is & 6 and the secular equation in

more complex, but it can be obtained straightforwardly giving rise to the expression

E® —2EY1 + 202 + D] + EZ 1+ 20°u + 1] —40* =0  (4.28)

which is a cubic equation it£?, but in which the term [} 20?21 + 1)] also appears.

Again in the non-relativistic limit we have a behaviour similar to (4.19) but now from
the matrix (4.26) we see the state is associated with 1, so the spin besides being 1 also
has a projection 1 and this complicates greatly the spectrum as functjpn«obs is clear
from (4.28).

We have seen that the results for the energy and the spin coincide in the approach we
have followed, with those of Kemmer [5] and Duffin when in their formulation of relativistic
particles of spin 0 and 1, one introduces a magnetic field. It is interesting to note though
that our procedure is applicable to any valuyeand thus to particles that can go up to spin
%n, and to stress this generality we shall consider in the next subsection the ea3e

(d) The energy spectrumrfa = 3, {h} = {3}

From the discussion in section 3, the only part of our analysis that requires care for an
arbitraryn, is the matrix element (3.25) which, in the particular problem indicated in the
title of this subsection, is given by

({3)s'0’t't'|Ryq I{3}sotT). (4.29)
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Because we are dealing with a symmetric representation of the U(4) group there is no
need of the extra indiceg’, y and besides’ =t’, s = ¢ and they can only have the values
3 1
S ands.
2 2
Again because of the symmetric nature of the representgdioof U(4) or, equivalently,
of the group S(3), the expression (4.29) can be written as

3({3}s'0't't'|54(D) ® 1,,(D)|{3}so17). (4.30)

To evaluate (4.30) it is convenient to decompose bra and ket in the part that have index 1
in ordinary and sign spin and the rest that has to do with indices 2 and 3. This can
be achieved with the help of reduced Wigner coefficient of U(4) or, equivalently, of an
appropriate fractional parentage coefficient as discussed, among other papers, in [22]. Once
this decomposition is achieved the matrix element (4.30) can be derived using standard
Racah analysis.

After this step for the case = 3, {h} = {3} we just follow the same procedure that we
discussed previously for the cafe} = {11} and {k} = {2}. We use a similar notation for
the projection of the ordinary and sign spin as we did before, i.e.

t

— ~1_3
2272

NI

3
27

NIWw
_Q
Il

-1
’ 27

NI

N

o =

’

(4.31)

t

)

N

NI Nlw

g = T =

NIR[ NIw
|

NI

N

(NI

In principle we have 20 possibilities for the valuesof from (4.31), but again we
shall restrict ourselves to the cake= 0, i.e. when the particle is at rest in the direction of
the magnetic field, and then there is the selection ruledhatr is either odd or even and
this reduces the matrices to £@0. We give in (4.32) a table of the numerical matrix when
o + t is odd, from which we could extract the secular equation by setting its determinant
to 0. We shall not carry out this last step as it clearly gives an equation, of the 10th degree
in E whose analysis is not simple. Rather we wish only to stress that we have a technique
that allows us to obtain and solve the relativistic equation for a particle with arbitrary spin
subjected to an interaction by reducing it to a supermultiplet type of problem where we
have the ordinary and sign spins and thus a U(4) type of symmetry.

5. Conclusions

The example discussed in this paper was one of a free particle with arbitrary spin in a
magnetic field because, when formulated in its matrix representation, it always gives rise to
finite matrices and thus its solution, at least with the use of computers, will give us exact
values for the energies.

The formalism though can be extended to a particle with arbitrary spin in any potential
and, in particular, to the Coulomb one. The analysis has then to be carried in a variational
manner, and in its more convenient form, through the use of harmonic oscillator states for
the orbital part of the problem, while the ordinary- and sign-spin part continue to be given
by basis of irreducible representations of the U(4) group.

The final results for the energy levels would of course not be exact, but going to a
sufficient number of quanta they could give reasonable approximations to the way in which
the spin of the patrticle affects the spectra of the problem.

This program is being implemented at the present time together with other aspects
involving the representation of the Lorentz group in the problem, and this paper is thus
part | of a series.
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Appendix: Commutation relations of the generators of U(4)

The generators of u(4) are given in (3.9) to which we have to add the unit opératdt
As the operators;,, f;, commute withs;,, t;, if v # u, it would be enough to prove the
commutation relation (3.11) by considering the corresponding ones for the operators

s;i®1 [®t 5 1. (A.1)
As we have the following relations:
[si, )] 1— |€ijk51k- [, 1] = |€ij1;tk l A2)
si8j = 768ij + 31€ikSk fit; = 70ij + €tk
we immediately conclude that
s@ls@N=icusi®l [ ley]=ialen
[Si®i,i®tj]:0 [Si®i,sj®lk]=i€ijzsz®tk
[f ® 1,5 Qt] =i€ies; Dt
[si ®t;, sk @ 1] = sisk ® tity — sp8; ® tet; (A.3)
= [28ik + Si€imsn] ® [58;¢ + Siejet]
— [%Ski + %iekimsm] ® [%ng + %iegj,,tn]
= Fi€imSmSie + 38iki€jents

and from (A.3) the commutation relations (3.11) follow immediately.
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